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Motivation : :
Experiments & Analysis

We employ Federated Active Learning (FAL) to identify and annotate
informative data, thereby reducing annotation costs. * Experimental results on medical image classification (Fed-ISIC & Fed-Camelyon) < Visualization of aleatoric uncertainty
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medical image datasets to verify the effectiveness of the proposed method. Fundus) and ablation studies are provided in the paper. FEAL identifies samples with higher uncertainty!




